skip to main content


Search for: All records

Creators/Authors contains: "Patton, Nicholas R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract From hillslope to small catchment scales (< 50 km 2 ), soil carbon management and mitigation policies rely on estimates and projections of soil organic carbon (SOC) stocks. Here we apply a process-based modeling approach that parameterizes the MIcrobial-MIneral Carbon Stabilization (MIMICS) model with SOC measurements and remotely sensed environmental data from the Reynolds Creek Experimental Watershed in SW Idaho, USA. Calibrating model parameters reduced error between simulated and observed SOC stocks by 25%, relative to the initial parameter estimates and better captured local gradients in climate and productivity. The calibrated parameter ensemble was used to produce spatially continuous, high-resolution (10 m 2 ) estimates of stocks and associated uncertainties of litter, microbial biomass, particulate, and protected SOC pools across the complex landscape. Subsequent projections of SOC response to idealized environmental disturbances illustrate the spatial complexity of potential SOC vulnerabilities across the watershed. Parametric uncertainty generated physicochemically protected soil C stocks that varied by a mean factor of 4.4 × across individual locations in the watershed and a − 14.9 to + 20.4% range in potential SOC stock response to idealized disturbances, illustrating the need for additional measurements of soil carbon fractions and their turnover time to improve confidence in the MIMICS simulations of SOC dynamics. 
    more » « less
  2. Abstract

    Large uncertainties in global carbon (C) budgets stem from soil carbon estimates and associated challenges in distributing soil organic carbon (SOC) at local to landscape scales owing to lack of information on soil thickness and controls on SOC storage. Here we show that 94% of the fine-scale variation in total profile SOC within a 1.8 km2semi-arid catchment in Idaho, U.S.A. can be explained as a function of aspect and hillslope curvature when the entire vertical dimension of SOC is measured and fine-resolution (3 m) digital elevation models are utilized. Catchment SOC stocks below 0.3 m depth based on our SOC-curvature model account for >50% of the total SOC indicating substantial underestimation of stocks if sampled at shallower depths. A rapid assessment method introduced here also allows for accurate catchment-wide total SOC inventory estimation with a minimum of one soil pit and topographic data if spatial distribution of total profile SOC is not required. Comparison of multiple datasets shows generality in linear SOC-curvature and -soil thickness relationships at multiple scales. We conclude that mechanisms driving variations in carbon storage in hillslope catchment soils vary spatially at relatively small scales and can be described in a deterministic fashion given adequate topographic data.

     
    more » « less
  3. Abstract

    Soil thickness is a fundamental variable in many earth science disciplines due to its critical role in many hydrological and ecological processes, but it is difficult to predict. Here we show a strong linear relationship (r2 = 0.87, RMSE = 0.19 m) between soil thickness and hillslope curvature across both convergent and divergent parts of the landscape at a field site in Idaho. We find similar linear relationships across diverse landscapes (n = 6) with the slopes of these relationships varying as a function of the standard deviation in catchment curvatures. This soil thickness-curvature approach is significantly more efficient and just as accurate as kriging-based methods, but requires only high-resolution elevation data and as few as one soil profile. Efficiently attained, spatially continuous soil thickness datasets enable improved models for soil carbon, hydrology, weathering, and landscape evolution.

     
    more » « less